56年级数学下册各单元期末考点大全

擅长研究白癜风的专家 http://news.39.net/bjzkhbzy/171218/5941698.html

大家好!我是小河老师,中小学语文通已开设「听名著」专栏。接下来,让我们一起听名著故事吧——中小学必考经典名著《海底两万里》第17集。

?戳绿色按钮,即可收听

人教版/苏教版/北师大版/冀教版等1-6年级数学下册期末知识点复习,已上传至网盘,需要下载的家长请下拉至文末,查看获取方式。

(向上滑动查看内容)

人教版五年级数学下知识点复习

▼▼▼▼

第一单元图形的变换

图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……

等腰三角形有1条对称轴,

等边三角形有3条对称轴,

长方形有2条对称轴,

正方形有4条对称轴,

等腰梯形有1条对称轴,

任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:

①对应点到对称轴的距离相等;

②对应点的连线与对称轴垂直;

③对称轴两边的图形大小、形状完全相同。

(5)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车

(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转度与原来重合。

旋转的性质:

(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

(2)其中对应点到旋转中心的距离相等;

(3)旋转前后图形的大小和形状没有改变;

(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

第二单元因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征

1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

4:自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.

关系:奇数+、-偶数=奇数

奇数+、-奇数=偶数

偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1、0四类.

质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97

以内找质数、合数的技巧:

看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数

质数×质数=合数

6、最大、最小

A的最小因数是:1;

A的最大因数是:A;

A的最小倍数是:A;

最小的自然数是:0;

最小的奇数是:1;

最小的偶数是:0;

最小的质数是:2;

最小的合数是:4;

7、分解质因数:把一个合数分解成多个质数相乘的形式。

用短除法分解质因数(一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2×3×5)

8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7

两个合数的互质数:8和9

一质一合的互质数:7和8

两数互质的特殊情况:

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;

⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

9、公因数、最大公因数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

10、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

11、求最大公因数和最小公倍数方法

用12和16来举例

1、求法一:(列举求同法)

最大公因数的求法:

12的因数有:1、12、2、6、3、4

16的因数有:1、16、2、8、4

最大公因数是4

最小公倍数的求法:

12的倍数有:12、24、36、48、…

16的倍数有:16、32、48、…

最小公倍数是48

2、求法二:(分解质因数法)

12=2×2×3

16=2×2×2×2

最大公因数是:

2×2=4(相同乘)

最小公倍数是:

2×2×3×2×2=48(相同乘×不同乘)

第三单元长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

不同点

长方体

都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽-高

a=L÷4-b-h

宽=棱长总和÷4-长-高

b=L÷4-a-h

高=棱长总和÷4-长-宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积=长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高V=abh

长=体积÷宽÷高a=V÷b÷h

宽=体积÷长÷高b=V÷a÷h

高=体积÷长÷宽h=V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a=a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=0毫升

(1L=1dm31ml=1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体=V现在-V原来

也可以V物体=S×(h现在-h原来)

V物体=S×h升高

8、    

大单位×进率=小单位

小单位÷进率=大单位

进率:1立方米=0立方分米=0000立方厘米(立方相邻单位进率0)

1立方分米=0立方厘米=1升=0毫升

1立方厘米=1毫升

1平方米=平方分米=00平方厘米

1平方千米=公顷=0000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位×进率=小单位

小单位÷进率=大单位

长度单位:

1千米=0米1分米=10厘米

1厘米=10毫米1分米=毫米

1米=10分米=厘米=0毫米

(相邻单位进率10)

面积单位:

1平方千米=公顷

1平方米=平方分米

1平方分米=平方厘米

1公顷=00平方米(平方相邻单位进率)

质量单位:

1吨=0千克

1千克=0克 

人民币:

1元=10角1角=10分1元=分

第四单元分数的意义和性质

1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。

4、分数与除法

A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/5

5、真分数和假分数、带分数

1、真分数:分子比分母小的分数叫真分数。真分数1。

2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1

3、带分数:带分数由整数和真分数组成的分数。带分数>1.

4、真分数<1≤假分数

真分数<1<带分数

6、假分数与整数、带分数的互化

(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:

(2)整数化为假分数,用整数乘以分母得分子如:

(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:

(4)1等于任何分子和分母相同的分数。如:

7、分数的基本性质:

分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。

9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

如:24/30=4/5

10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

如:2/5和1/4可以化成8/20和5/20

11、分数和小数的互化

(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是……

如:

0.3=3/.03=3/0.=3/0

(2)分数化为小数:

方法一:把分数化为分母是10、、0……

如:3/10=0.33/5=6/10=0.6

1/4=25/=0.25

方法二:用分子÷分母

如:3/4=3÷4=0.75

(3)带分数化为小数:

先把整数后的分数化为小数,再加上整数

12、比分数的大小:

分母相同,分子大,分数就大;

分子相同,分母小,分数才大。

分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

1/2=0.51/4=0./4=0.75

1/5=0.22/5=0.43/5=0.6

4/5=0.8

1/8=0.1/8=0./8=0./8=0./20=0./25=0.04

14、两个数互质的特殊判断方法:

①1和任何大于1的自然数互质。

②2和任何奇数都是互质数。

③相邻的两个自然数是互质数。

④相邻的两个奇数互质。

⑤不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

15、求最大公因数的方法:

①倍数关系:最大公因数就是较小数。

②互质关系:最大公因数就是1

③一般关系:从大到小看较小数的因数是否是较大数的因数。

16、分数知识图解:

第五单元分数的加减法

1、分数数的加法和减法

(1)同分母分数加、减法(分母不变,分子相加减)

(2)异分母分数加、减法(通分后再加减)

(3)分数加减混合运算:同整数。

(4)结果要是最简分数

2、带分数加减法:

带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

附:具体解释

(一)同分母分数加、减法

1、同分母分数加、减法:

同分母分数相加、减,分母不变,只把分子相加减。

2、计算的结果,能约分的要约成最简分数。

(二)异分母分数加、减法

1、分母不同,也就是分数单位不同,不能直接相加、减。

2、异分母分数的加减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

(三)分数加减混合运算

1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

2、整数加法的交换律、结合律对分数加法同样适用。

第六单元统计与数学广角

1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

众数能够反映一组数据的集中情况。

在一组数据中,众数可能不止一个,也可能没有众数。

2、中位数:

(1)按大小排列;

(2)如果数据的个数是单数,那么最中间的那个数就是中位数;

(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

3、平均数的求法:

总数÷总份数=平均数

4、一组数据的一般水平:

(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

5、平均数、中位数和众数的联系与区别:

①平均数:

一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

容易受极端数据的影响,表示一组数据的平均情况。

②中位数:

将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。

它不受极端数据的影响,表示一组数据的一般情况。

③众数:

在一组数据中出现次数最多的数叫做这组数据的众数。

它不受极端数据的影响,表示一组数据的集中情况。

5、统计图:我们学过——条形统计图、复式折线统计图。

条形统计图优点:条形统计图能形象地反映出数量的多少。

折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

注:①画图时注意:

一“点”(描点)、二“连”(连线)、三“标”(标数据)。

②要用不同的线段分别连接两组数据中的数。

6、打

规律——人人不闲着,每人都在传。(技巧:已知人数依次×2)

(1)逐个法:所需时间最多。

(2)分组法:相对节约时间。

(3)同时进行法:最节约时间

(向上滑动查看内容)

苏教版五年级数学下知识点复习

▼▼▼▼

第一单元简易方程

1、等式:表示相等关系的式子叫做等式。

2、方程:含有未知数的等式是方程。

3、方程一定是等式。等式不一定是方程。

4、等式的性质:等式两边同时加上或减去同一个数,所得结果仍然是等式。

5、方程的解:使方程左右两边相等的未知数的值。

6、解方程:求方程中未知数的过程。

7、检验

检验法一:把x=10代入原方程,

左边=60-4×10=20,

右边=20,

左边=右边,

所以,X=10是原方程的解。

检验法二:方程左边=60-4×10=20=方程右边

所以,X=10是方程的解

8、解方程时常用的关系式

一个加数=和-另一个加数

减数=被减数-差

被减数=减数+差

一个因数=积÷另一个因数

除数=被除数÷商

被除数=商×除数

9、列方程解应用题的思路

(1)审题并弄懂题目的已知条件和所求问题。

(2)理清题目的等量关系。

(3)设未知数,一般是把所求的数用X表示。

(4)根据等量关系列出方程

(5)解方程

(6)检验

(7)作答。

注意:解完方程,要养成检验的好习惯。

第二单元折线统计图

1、复式折线统计图的特点

从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤

①写标题和统计时间

②注明图例(实线和虚线表示)

③分别描点、标数

④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。

第三单元因数和公倍数

1、因数和倍数

几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数。因数与倍数是相互依存绝不能孤立的存在。   

(1)一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

(2)一个数最小的倍数是它本身,没有最大的倍数。

(3)一个数倍数的个数是无限的。

(4)一个数最大的因数等于这个数最小的倍数。

(5)2的倍数的特征:个位是0、2、4、6、8。

5的倍数的特征:个位是0或5。

3的倍数的特征:各位上数字的和一定是3的倍数。

2、奇数和偶数

按照是否是2的倍数可以把自然数分成两类偶数和奇数。

最小的偶数是0。

3、公因数和最大公因数

两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。

(1)A和B两个数的最大公因数常用(A,B)表示。

(2)两个数的公因数是有限的。

(3)公因数只有1的两个数叫作互质数

4、公倍数和最小公倍数

两个数公有的倍数,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的最小公倍数。

(1)A和B两个数的最小公倍数常用符号[A,B]表示。

(2)两个数的公倍数是无限的。

(3)两个数的最小公倍数一定是它们的最大公因数的倍数。

5、两个素数的积一定是合数

6、求最大公因数和最小公倍数的方法

(1)列举法

(2)图示法

(3)短除法

7、质因数:如果一个数的因数是质数,这个因数就是它的质因数。

8、分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。

第四单元分数的意义和性质

1、分数的意义

一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”

一个物体、一个计量单位或是一些物体等都可以看作一个整体。一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。

3、分数单位:

把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

4、分数与除法的关系

A÷B=(B≠0,除数不能为0,分母也不能够为0)。

5、真分数、假分数和带分数

(1)分子比分母小的分数叫真分数。真分数1。

(2)分子比分母大或分子和分母相等的分数叫假分数。假分数≧1

(3)带分数由整数和真分数组成的分数。带分数>1.

(4)真分数<1≤假分数

真分数<1<带分数

6、假分数与整数、带分数的互化

(1)假分数化为整数或带分数:用分子÷分母,商作为整数,余数作为分子。(2)整数化为假分数:用整数乘以分母得分子。

(3)带分数化为假分数:用整数乘以分母加分子,得数就是假分数的分子,分母不变。(4)1等于任何分子和分母相同的分数。

7、分数的基本性质

分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

8、公因数、最大公因数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

(1)几个数的公因数只有1,就说这几个数互质。

(2)求两个数的最大公因数的方法

列举法、筛选法、短除法、分解质因数法

(3)最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

9、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

(1)求两个数的最小公倍数的方法

列举法、筛选法、短除法、分解质因数法

10、约分和通分

(1)约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(2)通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

11、分数和小数的互化

(1)小数化为分数:

数小数位数,一位小数,分母是10;两位小数,分母是……

(2)分数化为小数:

分母是10、、0……的分数,可以直接化成小数。

也可以用分子÷分母。

如:3/4=3÷4=0.、比分数的大小

分母相同,分子大,分数就大;

分子相同,分母小,分数才大。

第五单元分数的加法和减法

1、分数加法和减法的意义

分数加、减法的意义和整数加、减法的意义相同。

2、同分母分数加、减法的计算

分母不变,分子相加、减。计算的结果能约分的要约分成最简分数。

3、异分母分数加、减法的计算

先通分,然后按照通分母分数加、减法进行计算。

4、分数加减混合运算

没有括号的,按照从左往右的顺序计算;有括号的,先算括号里面的,再算括号外面的。

5、分数加法的简算

整数加法的运算定律和在分数加法中同样适用。

第六单元圆

一、圆

1、圆是由一条曲线围成的平面图形。

2、画圆

(1)针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

(2)用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。

画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

3、圆的直径和半径

(1)在同一个圆里,有无数条半径和直径。

(2)在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

(3)在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r,r=d÷2)

6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。   

7、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。   用字母π(读pài)表示。

π是一个无限不循环小数,π=3.……   

我们在计算时,一般保留两位小数,取它的近似值3.14。

8、圆的周长

如果用C表示圆的周长,那么C=πd或C=2πr

9、圆的面积推导

圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=c/2=πr)。

即:S长方形=a×b   S圆=πr×r =

注意:切拼后的长方形的周长比圆的周长多了两条半径。

C长方形=2πr+2r=C圆+d

10、圆的面积

如果用S圆表示圆的面积,那么S圆=πr2。圆的面积是半径平方的π倍。

二、扇形

扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。扇形的大小是由圆心角决定的。

第七单元解决问题的策略

1、运用转化的策略可以把不规则的图形转化成规则的图形,转化前后图形变化了,但大小不变。

2、计算小数的除法时,可以把小数转化成整数来计算。

3、在计算异分母分数加、减时,可以把异分母分数装化成同分母分数来计算。

4、在进行面积公式推导时,可以把图形转化成已经学过的图形面积来计算。

5、运用转化的策略,从不同的角度灵活的分析问题,可以使复杂的问题简单化。

(向上滑动查看内容)

北师大版五年级数学下知识点复习

▼▼▼▼

第一单元分数加减法

一、分数的意义

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

二、分数与除法的关系,真分数和假分数

1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:

①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

3、假分数与带分数的互化:

①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

三、分数的基本质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

四、分数的大小比较

①同分母分数,分子大的分数就大,分子小的分数就小;

②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化)

五、约分(最简分数)

1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)

注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

六、分数和小数的互化:

1、小数化分数:将小数化成分母是10、、0…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)

如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。

3、分数和小数比较大小:一般把分数变成小数后比较更简便。

七、分数的加法和减法

1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。

3、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。

4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

第二单元长方体(一)

1、认识长方体、正方体,了解各部分的名称。

(1)表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。

(2)左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。

(3)长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。

(4)正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。

(5)长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

长方体的宽=棱长总和÷4-长-高

长方体的长=棱长总和÷4-宽-高

长方体的高=棱长总和÷4-宽-长

正方体的棱长总和=棱长×12

正方体的棱长=棱长总和÷12

2、展开与折叠(正方体展开共11种)

第一类:1—4—1型6个

第二类:2—3—1型3个

第三类:2—2—2型(楼梯形)1个

第四类:3-3型1个

注意:(1)田字型与凹字型的全错。

(2)正方体展开至少和最多都只剪开7条棱。

3、长方体的表面积

(1)表面积的意义:是指六个面的面积之和。

(3)长方体的

表面积=长×宽×2+长×高×2+宽×高×2

=(长×宽+长×高+宽×高)×2

(4)正方体的表面积=棱长×棱长×6

4、露在外面的面

(1)在观察中,通过不同的观察策略进行观察。

如:一种是看每个纸箱露在外面的面,再加到一起;

另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。

例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是多少?

解:首先应找出有多少个面露在外面:

如果用法一的方法来找:3+1+2+3=9(个);

如果用法二的方法来找:从上面看有3个面,从右侧面看有2个面,从正面看有4个面,共有3+2+4=9(个)。

因为每个面都是面积相等的正方形,所以露在外面的面积=10×10×9=(厘米2)

答:露在外面的面积一共是平方厘米。

(2)发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。

(3)求露在外面的面的面积=棱长×棱长×露在外面的面的个数。

第三单元分数乘法

分数乘法(一)知识点:

(1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。

(2)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。

(3)计算时,应该先约分再计算。

分数乘法(二)知识点:

(1)整数乘分数的意义:求一个数的几分之几是多少。

(2)理解打折的含义。例如:九折,是指现价是原价的十分之九。

补充知识点:

①打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。

现价=原价×折扣

原价=现价÷折扣

折扣=现价÷原价

②买一赠一打几折:出一个的钱拿两个货品,即1除以2等于零点五,五折

买三赠一打几折:出三个的钱拿四个货品,即3除以4等于零点七五,七五折

分数乘法(三)知识点:

1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(结果是最简分数。)

2、比较分数相乘的积与每一个乘数的大小:

①真分数相乘积小于任何一个乘数;

②真分数与假分数相乘积大于真分数小于假分数。

③乘数乘以1的数,积乘数;

乘数乘以=1的数,积=乘数;

乘数乘以1的数,积乘数;

3、求一个数的几分之几是多少,用乘法。(即已知整体和部分量相对应的分率,求部分量,用乘法)

4、倒数

(1)如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。

(2)当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。

(3)1的倒数仍是1;0没有倒数。0没有倒数,是因为0不能作除数。

(4)求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。

第四单元长方体(二)

一、体积与容积概念

体积:物体所占空间的大小叫作物体的体积。(从外部测量)

容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量)

注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。

②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)

二、体积单位

1、认识体积、容积单位

常用的体积单位:立方米(m3)、立方分米(dm3)、立方厘米(cm3)

常用的容积单位:升、毫升,1升=1立方分米、1毫升=1立方厘米

2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:

①手指头、苹果、火柴盒体积较小,可用cm3作单位

②西瓜、粉笔盒体积稍大,可以用dm3作单位

③矿泉水瓶、墨水瓶可以用毫升作单位

④热水瓶等较大盛液体容器、冰箱可以用升作单位

⑤我们饮用的自来水用“立方米”作单位

三、长方体的体积

1、长方体、正方体体积的计算方法

①长方体的体积=长×宽×高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh

②正方体的体积=棱长×棱长×棱长,如果棱长用a表示,体积可表示为V=a3=a×a×a

长方体(正方体)的体积=底面积×高V=Sh

补充知识点:长方体的体积=横截面面积×长

2、能利用长方体(正方体)的体积及其他两个条件求出问题。

如:长方体的高=体积÷长÷宽

长=体积÷高÷宽宽=体积÷高÷长

注意:计算体积时,单位一定要统一;

表面积与体积表示的意义不一样,单位不同,无法比较大小。

四、体积单位的换算认识体积、容积单位。

常用的体积单位有:立方厘米(cm3)、立方分米(dm3)、立方米(m3)。

常用的容积单位有:升(L)、毫升(mL)

知识点:

1、体积、容积单位之间的进率:相邻体积、容积单位间进为0

1米3=0分米31分米3=0厘米3

1升=1分米31毫升=1厘米31升=0毫升

2、体积、容积单位之间的换算方法:

体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率

五、有趣的测量

1、不规则物体体积的测量方法:

一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)

注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积

2、不规则物体体积的计算方法:现在液体体积减去原来液体体积

第五单元分数除法

一、分数除法(一)

分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。

分数除以整数(0除外)等于乘这个数的倒数。

二、分数除法(二)

1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。

2、一个数除以分数的计算方法:除以一个数(0除外)等于乘这个数的倒数。

3、比较商与被除数的大小。

除数小于1,商大于被除数;

除数等于1。商等于被除数;

除数大于1,商小于被除数。

三、分数除法(三)

1、列方程“求一个数的几分之几是多少”的方法:

(1)解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。

(2)算术方法:用部分量除以它所占整体的几分之几(对应量÷对应分率=标准量)

2、判断单位“1”:

①一般来说,某个数的几分之几,“某个数”就是单位“1”

②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1”

③谁是谁的几分之几,“是”字后面的数量就是单位“1”

四、倒数

1、理解倒数的意义:如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。

2、求倒数的方法:把这个数的分子和分母调换位置。

3、1的倒数仍是1;0没有倒数。(0没有倒数,是因为在分数中,0不能做分母。)

第六单元确定位置

确定位置(一)知识点

1、认识方向与距离对确定位置的作用。

2、能根据方向和距离确定物体的位置。

3、能描述简单的路线图。

确定位置(二)知识点

了解确定物体位置的方法。

能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另一地所在方向以及两地的距离)

1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。

2、行和列的意义:竖排叫做列,横排叫做行。

3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)

(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上。

6、图形平移变化规律:

(1)图形向左平移,行数不变,列数减去平移的格数。图形向右平移,行数不变,列数加上平移的格数。

(2)图形向上平移,列数不变,行数加上平移的格数。图形向下平移,列数不变,行数减去平移的格数。

第七单元用方程解决问题

1、列方程解应用题的步骤:

(1)找到题中的等量关系式

(2)解设所求量为x

(3)根据等量关系式列出相应的方程

(4)解答方程,注意计算结果不带单位

(5)检验做答

2、在有多个未知数量的应用题中,通常应将1倍数设为x,举例如下:

例:爸爸的年龄是儿子年龄的4倍,父子俩年龄之和为40,求父亲和儿子的年龄各是多少岁?

解:首先根据题意找出等量关系式:爸爸年龄+儿子年龄=40

因为儿子年龄是1倍数,所以:设儿子年龄为x岁,那么爸爸年龄就是4x,代入等量关系式得:

爸爸年龄为:4x=4×8=32(岁)

答:爸爸的年龄为32岁,儿子的年龄为8岁。

3、相遇问题涉及到的公式:

路程=速度×时间

时间=路程÷速度

相距距离=速度和×相遇时间

第八单元数据的表示和分析

1、条形统计图

优点:很容易看出各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。

取一个单位长度表示数量的多少要根据具体情况而确定;

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

2、折线统计图

用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。

3、扇形统计图

用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

优点:很清楚地表示出各部分同总数之间的关系。

(向上滑动查看内容)

冀教版版五年级数学下知识点复习

▼▼▼▼

一图形的变换

一、轴对称:①将图形沿着一条直线对折,如果直线两侧的部分能完全重合,这样的图形叫做轴对称图形,这条直线叫做它的对称轴。②找对称轴方法:用对折的方法找对称轴。③正方形4条对称轴,等边三角形3条对称轴,等腰三角形1条对称轴,等腰梯形1条对称轴,长方形2条对称轴,圆无数条对称轴,线段1条对称轴,角1条对称轴。④画轴对称图形另一半的方法:1、找出所给图形的关键点,如图形的顶点、相交的点、端点等。2、数出或量出图形的关键点到对称轴的距离。3、在对称轴的另一侧找出关键点的对称点。4、按所给图形的形状连接各对称点,画出图形另一半。⑤轴对称图形上每对对称点到对称轴的距离相等。

二、平移:①平移就是将一个物体或图形按一定的方向一动一定的距离。②平移后它们的形状、大小、方向都不改变。③平移2要素:移动的方向和移动的距离。④平移了几格不是看两个图形之间空了几个方格,而是看对应点或对应线段平移了几个方格。④画平移图形方法:一找:找出图形关键点(或关键线段)二数:以关键点(关键线段)为参照点(参照线段),数出平移的格数。三描:按指定方向和格数把参照点(参照线段)平移到新位置,描出各对应点(或画出对应线段)。四连:把各对应点按照原图形顺次连接,就得到平移后的图形。

三、旋转:①物体绕着某一点运动叫做旋转。②旋转的方向:与表针的转动方向一致的叫做顺时针方向,与表针转动方向相反的叫做逆时针方向。③旋转三要素:旋转点:物体旋转时所绕的点(轴)叫做旋转点。旋转方向:顺时针和逆时针。旋转角度:物体旋转前后,物体对应点与旋转中心连线的夹角就是旋转角度。④旋转的性质:图形旋转后,图形的对应点、对应线段都旋转相应的角度,对应点到旋转点的距离相等。⑤旋转的特征:图形旋转后,形状、大小都没有变化,只是位置和方向变了。⑥在方格纸上画简单图形旋转90度后图形步骤:1.确定旋转角度的大小和旋转方向2.确定每对对应点与旋转中心构成的旋转角3.确定旋转后图形的其他对应点4.顺次连接上述各对应点

二、异分母分数加减法

真分数与假分数:

①分数与除法的关系:分数的分子相当于除法里的被除数,分母相当于除法里的除数,分数线相当于除法里的除号,分数的大小(分数的值)相当于除法里的商。区别:分数是一种数,除法是一种

运算。它的关系用字母表示为:

②分子比分母小的分数叫真分数,真分数小于1;分子比分母大(或相等)的分数叫假分数,假分数大于或等于1。

③分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

④最简分数:分子和分母只有公因数1的分数叫最简分数。分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

⑤同分数加减法的计算法则:分母不变,把分子相加减。

⑥异分母加减法的计算法则:先通分,再按照同分母加减法的计算法则进行计算。

⑦由一个整数(0除外)和一个真分数合成的数叫做带分数。带分数大于1。

⑧带分数读法:“整数部分”又“分数部分”如一又四分之三。

⑨带分数写法:先写整数部分在写分数部分,分数线与整数中间对齐。

⑩假分数化成带分数方法:用假分数的分母作带分数的分母,假分数分子除以分母,商是带分数的整数部分,余数是分数部分的分子;带分数化成假分数方法:用带分数分数部分的分母作假分数的分母,用分母和整数部分的乘积再加上原来的分子作分子。整数化成假分数方法:整数(0除外)都可以化成分母是任意自然数(0除外)的假分数。用指定的分母作假分数分母,用分母和整数的乘积作假分数的分子。

分数大小的比较:

①把异分母的分数化成和原来分数相等的同分母的分数,叫做通分

②通分时用两个分数的分母的最小公倍数作同分母进行通分,计算比较简便。③当两个数是倍数关系时,较大的一个数就是这组数的最小公倍数如12和24的最小公倍数是24;当两个数互为质数或相邻的自然数时,这组数的最小公倍数是它们的乘积.如7和5的最小公倍数是35;5和6的最小公倍数是30.

互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。④求两个数的最大公因数和最小公倍数的异同:都是用短除法分解质因数;都是用这两个数的公有的质因数连续去除(一般是从最小的开始),一直到所得的商互质为止。不同点是:求最大公因数只把所有除数相乘;求最小公倍数把所有的除数和最后的上连乘起来。

分数和小数的互化:

①分数化成小数:分子除以分母,除不尽的一般保留两位小数。假分数化成小数:分子除以分母,除不尽的一般保留两位小数;带分数化成小数:先把带分数的分数部分化成小数,再加上整数部分;

②小数化成分数:先把一位两位三位……小数化成分别分母是10,,0,……的分数,在约分成最简分数。整数部分不为0的小数化成分数时,整数部分不为0的小数化成分数时,整数部分不变,只化小数部分,整数部分与小数部分化成的分数合起来即可。③一个最简分数,如果分母除了2和5之外,还含有其他质因数为因数,这个分数就不能化成有限小数。④常用的分数与小数间的互化。

异分母分数加减法:①异分母分数加减法计算“三字决”----通算约:通:先通分,把异分母分数化成同分母分数;算:按照同分母分数加减方法计算:分母不变,分子相加减;约:结果能约分的要约成最简分数②分数和小数混合运算:如果分数能化成有限小数,把分数化成有限小数再计算比较简单;如果分数不能化成有限小数,就必须把小数化成分数再计算。③分子都是1、分母是两个相邻自然数(0除外)的两个分数相加,这两个分数的和也是一个分数,和的分母是两个分母的积,分子是两个分母的和。分子都是1、分母是两个相邻自然数(0除外)的两个分数相减,这两个分数的和也是一个分数,和的分母是两个分母的积,分子是两个分母的差。④带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

分数加减混合运算:①异分母分数连加计算方法:可以按从左到右顺序一次相加,也可将所有分数一次性通分,再相加,计算结果要化成最简分数。②分数加减混合运算:没有括号的,按从左到右顺序依次计算;有括号先算括号里的。

简便计算部分

加法结合律:(a+b)+c=a+(b+c)加法交换律:a+b=b+a减法的性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。去括号:括号前是加号的,去掉括号后,括号内的符号不变号;括号前是减号的,去掉括号后,括号内的符号要变号。

a+(b-c)=a+b-ca-(b-c)=a-b+c

三、长方体和正方体

①长方体棱长之和:(长+宽+高)×4正方体棱长之和:棱长×12

②长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6

③并不是所有物体都有6个面:

(1)6个面:长方体或正方体:油箱、罐头盒、纸箱等

(2)5个面:长方体或正方体:水池、鱼缸等

(3)4个面:长方体或正方体:通风管等

④物体截成几段,增加一个截口就增加2个截面(增加面的个数=截口数×2)

四、分数乘法

一、分数乘整数①分数的意义:求几个相同加数和的简便运算。②分数乘整数:分母不变,分子于整数相乘的积作分子。(能约分的要先约分再计算,可使计算简便。乘得的积要化成最简分数)③“求一个数的几分之几是多少”:(1):找准单位“1”(2)想出数量关系式:单位“1”x分率=分率对应量(3)根据数量关系列式解答

分数乘分数:①分数乘分数的意义就是求一个数的几分之几是多少。②分数乘分数计算方法:分子相乘的积作分子,分母相乘的积作分母③先约分再计算,计算结果化成最简分数。④判断大小:1)一个数(0除外)乘大于1的数,积大于这个数。2)一个数(0除外)乘小于1的数(0除外),积小于这个数。(3)一个数(0除外)乘1,积等于这个数。

混合运算:

①如果只有加减法或乘除法,按从左到右顺序依次计算;既有乘除又有加减,先算乘除后算加减,有括号先算括号里的。

②乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c

倒数:①倒数的意义:乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。②(1)a是非0自然数时,它的倒数是1/a.自然数(0和1除外)的倒数都小于它本身。(2)真分数的倒数都大于1.假分数的倒数都大于或等于1。③分数的倒数:交换分子分母的位置即可。

④带分数的倒数:先化成假分数再交换分子分母位置。

⑤小数的倒数:先化成真分数会假分数,再交换分子分母位置。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

找单位“1”的方法:

(1)从含有分数的关键句中找,注意“的”前“比”后的规则。

(2)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(3)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(4)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

(5)分率与量要对应。①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;⑦工作总量的比较量对工作总量的分率⑧工作效率的比较量对工作效率的分率;⑨部分的比较量对部分的分率⑩总量的比较量对总量的分率;

五、长方体和正方体的体积

1、体积和体积单位:①物体所占空间的大小叫做物体的体积。常用的体积单位立方厘米、立方分米、立方米

长方体和正方体的体积:

长方体的体积=长×宽×高V=abh

正方体的体积=棱长×棱长×棱长V=a3

长方体(或正方体)的体积=底面积×高V=Sh(计算时一定要先统一单位长度)体积单位之间的进率:

①物体浸没在水中时,所排开的水的体积就是物体的体积。②高级单位换成低级单位,用高级单位的数乘进率,低级单位换成高级单位,用低级单位的数除以进率。

容积:①一个容器所能容纳的物体的体积叫做这个容器的容积。容积的计算方法与体积计算方法相同,但是要从里面测量数据。不是所有物体都有容积。②计算容积一般就用体积单位,液体的容积常用单位是升和毫升也可以写成L和ml。。1升=1立方分米1毫升=1立方厘米1升=0毫升③同一容器,体积大于容积。

六、分数除法

1、分数除法的意义:乘法:因数×因数=积除法:积÷一个因数=另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。将除法转化为乘法的要点:(1)被除数不变(2)除号变乘号(3)除数变成它的倒数

3、规律(分数除法比较大小时):

(1)、当除数大于1,商小于被除数;

(2)、当除数小于1(不等于0),商大于被除数;

(3)、当除数等于1,商等于被除数。

(1)一个数(0除外)除以一个真分数,所得的商大于它本身。

(2)一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

(3)一个数(0除外)除以一个带分数,所得的商小于它本身。

除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。a÷b÷c=a÷(b×c)a÷b÷c=a÷c÷b

二、分数除法解决问题

(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。)

1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1加或减分率)=分率对应量

2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。(2)算术(用除法):分率对应量÷对应分率=单位“1”的量

3、求一个数是另一个数的几分之几:就用一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或:①求多几分之几:大数÷小数–1②求少几分之几:1-小数÷大数

列方程

解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

10个数量关系式:

加法:和=加数+加数一个加数=和-两一个加数

减法:差=被减数-减数被减数=差+减数减数=被减数-差

乘法:积=因数×因数一个因数=积÷另一个因数

除法:商=被除数÷除数被除数=商×除数除数=被除数÷商

七折线统计图

①折线统计图:用一个单位长度表示一定的数量,根据数据的大小描出各点,然后把各点用线段顺次连接起来,这样的统计图叫做折线统计图。②折线统计图的特点是不仅可以反映数量的多少,还可以反映数量的增减变化情况。③连接两点的线段越陡,说明变化幅度越大,线段越平缓,说明变化幅度越小。④绘制折线统计图步骤:先确定横轴和纵轴,确定单位长度并画出方格图,再描点(标上数据)、连线。⑤复式折线统计图不仅可以看出数量增减变化情况,而且便于对几组相关数据进行分析比较。⑥复式折线统计图要用不同折线表示不同类别,要用图例说明。

(向上滑动查看内容)

人教版六年级数学下知识点复习

▼▼▼▼

第一单元负数

1、负数的由来:

为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的.42/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负

2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)

负数的写法:

数字前面加负号“-”号,不可以省略

例如:-2,-5.33,-45,-2/5

正数:

大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)

正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/5

4、0既不是正数,也不是负数,它是正、负数的分界限

负数都小于0,正数都大于0,负数都比正数小,正数都比负数大

5、数轴:

6、比较两数的大小:

①利用数轴:

负数<0<正数或左边<右边

②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大

1/3>1/6-1/3<-1/6

第二单元百分数二

(一)、折扣和成数

1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,

六折五=6.5/10=65/=65﹪

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪

商品现在打六折五:现在的售价是原价的65﹪

2、成数:

几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪

八成五=8.5/10=85/=80﹪

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪

今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

(二)、税率和利率

1、税率

(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:

应纳税额=总收入×税率

收入额=应纳税额÷税率

2、利率

(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:

利息=本金×利率×时间

利率=利息÷时间÷本金×%

(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

税后利息=本金×利率×时间×(1-利息税率)

购物策略:

估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案

学后反思:做事情运用策略的好处

第三单元圆柱和圆锥

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1.以长方形的长为底面周长,宽为高;

2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S增=2πr2

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

6、圆柱的相关计算公式:

底面积:S底=πr2

底面周长:C底=πd=2πr

侧面积:S侧=2πrh

表面积:S表=2S底+S侧=2πr2+2πrh

体积:V柱=πr2h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,

即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr2

底面周长:C底=πd=2πr

体积:V锥=1/3πr2h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

三、圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh

题型总结

①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积

分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化

分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比

②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)

③横截面的问题

④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体

⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3

第四单元比例

1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

7、比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示x/y=k(一定)

9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

10、判断两种量成正比例还是成反比例的方法:

关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类

(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺

13、图上距离:

图上距离/实际距离=比例尺

实际距离×比例尺=图上距离

图上距离÷比例尺=实际距离

14、应用比例尺画图的步骤:

(1)写出图的名称、

(2)确定比例尺;

(3)根据比例尺求出图上距离;

(4)画图(画出单位长度)

(5)标出实际距离,写清地点名称

(6)标出比例尺

15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:

根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:(成正比例或成反比例)

单价×数量=总价

单产量×数量=总产量

速度×时间=路程

工效×工作时间=工作总量

18、

已知图上距离和实际距离可以求比例尺。

已知比例尺和图上距离可以求实际距离。

已知比例尺和实际距离可以求图上距离。

计算时图距和实距单位必须统一。

19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

答:每天播种的公顷数×天数=播种的总公顷数

已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。

第五单元数学广角-鸽巢问题

1、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用

①什么是鸽巣原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表

放法

盒子1

盒子2

1

3

0

2

2

1

3

1

2

4

0

3

无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。这个结论是在“任意放法”的情况下,得出的一个“必然结果”。

类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子

如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信

我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式

②利用公式进行解题:

物体个数÷鸽巣个数=商……余数

至少个数=商+1

2、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(至少数-1)+1

②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

③公式:

两种颜色:2+1=3(个)

三种颜色:3+1=4(个)

四种颜色:4+1=5(个)

(向上滑动查看内容)

苏教版六年级数学下知识点复习

▼▼▼▼

第一部份 数与代数

(一)数的认识

整数

1、一个物体也没有,用0表示。0和1、2、3……都是自然数,也都是整数

2、最小的自然数是0,自然数的个数是无限的,没有最大的自然数。

3、0既不是正数,也不是负数。正数都大于0,负数都小于0。

4、整数包括正整数、0和负整数。如:-3、-17、0、90、6等。

5、整数的读写:多位数从个位起,每四位分为一级,可分为个级、万级、亿级。读数时,从最高位读起,一级一级地读。读万级和亿级的数时要按个级的读法来读,,并在后面加上级名。每一级末尾的0都不读,其他数位上无论有一个0或连续有几个0,都只读一个“零”。

6、整数的写法:写数时,先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一位上一个也没有就在那一位上写0。

7、整数的数位从低位开始分别是个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、百亿位、千亿位……

整数的计数单位分别是一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿……

8、大数目的改写:把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

在不改变原数大小的前提下,按要求改写数,写出的数是原数的准确数,根据需要还可以还原。例如:=9.亿,=45.32万。

9、求一个数的近似值(通常采用四舍五入法):把一个数保留整数、保留一位小数、保留两位小数、保留三位小数……也可以分别说成精确到个位、精确到十分位、精确到百分位、精确到千分位……

例如把先改写成用“万”作单位的数,再省略“万”后面的尾数(精确到万位)

=.万≈万

10、整数的大小比较:如果位数不同,位数多的数就大;如果位数相同,先看最高位,最高位上的数大的那个数就大,最高位相同,次高位上的数大的哪个数就大,如果还相同,则继续比较,以此类推,直到比较出大小为止。

小数

1、分母是10、、0……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

3、小数点向右移动一位、两位、三位……原来的数分别扩大10倍、倍、0倍……

小数点向左移动一位、两位、三位……原来的数分别缩小10倍、倍、0倍……

4、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。

5、小数的读法:读小数时,整数部分仍按照整数的读法来读,整数部分是“0”的读作“零”,小数点读作“点”,小数部分按从左往右的顺序读出每个数位上的数字,小数部分的0要读。

6、小数的写法:写小数时,整数部分按照整数的写法去写,整数部分是0的写作“0”,小数点写在整数部分的右下角,小数部分顺次写出每一个数位上的数字。

7、小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

8、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

9、比较小数大小的方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

10、求小数近似数的一般方法:

(1)先要弄清保留几位小数;

(2)根据需要确定看哪一位上的数;

(3)用“四舍五入”的方法求得结果。

分数

1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

3、从小数和分数的意义可以看出,小数实际上就是分母是10、、0……的分数。

4、分数可以分为真分数和假分数。

5、分子小于分母的分数叫做真分数。真分数小于1。

6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。分子是分母倍数的假分数实际上是整数。

7、分子和分母只有公因数1的分数叫做最简分数。

8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

9、应用分数的基本性质,可以通分和约分。

约分:用分子和分母同时除以它们的最大公因数,化成最简分数的过程。

通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程,叫做通分。

10、倒数:乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。

百分数

1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或

2、分数与百分数比较:

不同点

相同点

分数

可以表示具体数量,可以有单位名称

都可以表示两个数之间的关系

百分数

不可以表示具体数量,不可以有单位名称

3、折扣:在进行商品销售是,经常用到“打折扣”出售,简单说就是打折,几折就是十分之几,或用百分数百分之几十来表示。如:八折就是按原价的80%出售,六五折就是按原价的65%出售。

原价×折扣=现价   现价÷原价=折扣   现价÷折扣=原价

4、分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、、0……的分数,再约成最简分数。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数,也就是百分号前保留一位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分母是的分数,能约分的要约成最简分数。

5、求一个数比另一个数多(少)百分之几,就是求一个数比另一个数多(少)的占另一个数的百分之几。

拿多或者少的部分÷单位“1”

6、利息=本金×利率×时间

因数与倍数

1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。

2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

3、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。

4、5的倍数的特点:个位上的数是5或0。

 2的倍数的特点:个位上的数是2、4、6、8或0。2的倍数都是偶数。

 3的倍数的特点:各位上数的和一定是3的倍数。

5、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。

6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。

7、一个数,如果除了1和它本身之外还有别的因数,这样的数就叫做合数。

8、在1—20这些数中:

 素数:2、3、5、7、11、13、17、19。 

合数:4、6、8、9、10、12、14、15、16、18、20。

1既不是质数,也不是合数

9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。

10、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。

11、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。

12、公因数只有1的两个数有以下几种情况:

(1)相邻的两个自然数

(2)质数与质数

(3)质数与合数(但合数不是质数的倍数)

(二)数的运算

计算法则

1、计算整数加、减法要把相同数位对齐,从低位算起。

2、计算小数加、减法要把小数点对齐,从低位算起。

3、小数乘法:

(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(2)注意:在积里点小数点时,位数不够的,要在前面用0补足。

4、小数除法:

(1)商的小数点要和被除数的小数点对齐;

(2)有余数时,要在后面添0,继续往下除;

(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

5、分数加、减法:

(1)同分母分数相加减,把分子相加减,分母不变。

(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。

6、分数大小的比较:

(1)同分母分数相比较,分子大的大,分子小的小。

(2)异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

7、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

8、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

四则运算关系

加法

一个加数=和-另一个加数

减法

被减数=差+减数   减数=被减数-差

乘法

一个因数=积÷另一个因数

除法

被除数=商×除数   除数=被除数÷商

1、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

2、简便计算

运算定律:

运算定律

用字母表示

加法交换律

a+b=b+a

加法结合律

(a+b)+c=a+(b+c)

乘法交换律

a×b=b×a

乘法结合律

(a×b)×c=a×(b×c)

乘法分配律

(a+b)×c=a×c+b×c

减法运算规律

a-b-c=a-(b+c)

除法运算规律

a÷b÷c=a÷(b×c)

2、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)

(1)A÷0.1=A×10

(2)A×0.1=A÷10

(7)A÷0.01=A×;

(8)A×0.01=A÷

(3)A÷0.2=A×5

(4)A×0.2=A÷5

(9)A÷0.25=A×4

(10)A×0.25=A÷4

(5)A÷0.5=A×2

(6)A×0.5=A÷2

(11)A÷0.=A×8

(12)A×0.=A÷8

3、求近似数的方法。

(1)四舍五入法。 (2)进一法。 (3)去尾法。

4、积与因数、商与被除数的大小比较:

第2个因数1,积第1个因数;

第2个因数=1,积=第1个因数;

第2个因数1,积第1个因数。

除数1,商被除数;

除数=1,商=被除数;

除数1,商被除数;

(三)式与方程

用字母表示数

1、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。在省略数字与字母之间的乘号时,要把数字写在字母的前面。

2、2a与a2意义不同:2a表示两个a相加,a2表示两个a相乘。即:2a=a+a,a2=a×a。

3、用字母表示数:

(1)用字母表示任意数:如X=4 a=6

(2)用字母表示常见的数量关系:如s=vt

(3)用字母表示运算定律:如a+b=b+a

(4)用字母表示计算公式:S=ah

方程与等式

1、含有未知数的等式叫做方程。

2、使方程左右两边相等的未知数的值,叫做方程的解。

3、求方程的解的过程,叫做解方程。

4、方程和等式的联系与区别:

方程

等式

联系

方程一定是等式,等式不一定是方程

区别

含有未知数

不一定含有未知数

5、等式的基本性质(一)

等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式。

6、等式的基本性质(二)

等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。

7、列方程解应用题的一般步骤:

(1)弄清题意,找出未知数并用X表示。

(2)找出应用题中数量间的相等关系,并列出方程。

(3)求出方程的解。

(4)检验或验算,写出答案。

(四)正比例与反比例

比和比例

1、比和比例的联系与区别:

1、意义不同

比的意义

两个数相除又叫做两个数的比。

比例的意义

表示两个比相等的式子叫做比例。

2、名称不同

比的名称

两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比例的名称

组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。

3、性质不同

比的性质

比的前项和后项同时乘或者除以相同的数(0除外),比值不变。

比例的性质

在比例里,两个外项的积等于两个内项的积。

4、应用不同

应用比的意义

求比值。

应用比的性质

化简比。

应用比例的意义

判断两个不能否组成比例。

应用比例的性质

不但可以判断两个比能否组成比例,还可以解比例。

2、比同分数、除法的联系与区别:

分数

除法

前项

分子

被除数

比号

分数线

除号

后项

分母

除数

比值

分数值

比的基本性质

分数的基本性质

除法的商不变性质

比表示两个数之间的关系。

分数表示一个数。

除法表示一种运算。

3、求比值与化简比的区别:

一般方法

结 果

求比值

根据比值的意义,用前项除以后项。

是一个数。可以是整数、小数或分数。

化简比

根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外)。

是一个比。它的前项和后项都是整数,并且是互质数。

4、化简比:

(1)整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。

(2)小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。

(3)分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。

5、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。

6、比例尺=图上距离︰实际距离

正比例、反比例

1、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

2、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。                

3、正比例与反比例的区别:

正比例

反比例

相同点

都有两种相关联的量,一种量变化,另一种量也随着变化。

不同点

商一定

=k(一定)

积一定

x×y=k(一定)

第二部份 空间与图形

(一)图形的认识、测量

量的计量

1、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

2、长度单位:(10)

1千米=0米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=厘米

3、面积单位是用来测量物体的表面或平面图形的大小的。常用的面积单位有:平方千米、公顷、平方米、平方分米、平方厘米。

4、测量和计算土地面积,通常用公顷作单位。边长米的正方形土地,面积是1公顷。

5、测量和计算大面积的土地,通常用平方千米作单位。边长0米的正方形土地,面积是1平方千米。

6、面积单位:()

1平方千米=公顷

1公顷=00平方米

1平方米=平方分米

1平方分米=平方厘米

7、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

8、体积单位:(0)   

1立方米=0立方分米

1立方分米=0立方厘米

1升=0毫升

9、常用的质量单位有:吨、千克、克。

10、质量单位:

1吨=0千克

1千克=0克

11、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。

12、时间单位:(60) 

1世纪=年

1年=12个月

1年=4个季度

1个季度=3个月

1个月=3旬

大月=31天

小月=30天

平年二月=28天

闰年二月=29天

1天=24小时

1小时=60分

1分=60秒

13、高级单位的名数改写成低级单位的名数应该乘以进率;

 低级单位的名数改写成高级单位的名数应该除以进率。

14、常用计量单位用字母表示:

千米:km

米:m

分米:dm

厘米:cm

毫米:mm

吨:t

千克:kg

克:g

升:l

毫升:ml

平面图形

1、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

2、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

3、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于度的角是钝角;等于度的角是平角;等于度的角是周角。

4、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

5、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。按边分,可以分为等边三角形、等腰三角形和任意三角形。

7、三角形的内角和等于度。

8、在一个三角形中,任意两边之和大于第三边。

9、在一个三角形中,最多只有一个直角或最多只有一个钝角。

10、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

11、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

12、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

13、围成一个图形的所有边长的总和就是这个图形的周长。

14、物体的表面或围成的平面图形的大小,叫做它们的面积。

15、平面图形的面积计算公式推导:

平行四边形面积公式的推导过程?

 (1)把平行四边形通过剪切、平移可以转化成一个长方形。

(2)长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

(3)因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。

三角形面积公式的推导过程?

(1)用两个完全一样的三角形可以拼成一个平行四边形。

(2)平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半

(3)因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。

梯形面积公式的推导过程?

(1)用两个完全一样的梯形可以拼成一个平行四边形。

(2)平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。

(3)因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。

画图说明圆面积公式的推导过程

(1)把圆分成若干等份,剪开后,拼成了一个近似的长方形。

(2)长方形的长相当于圆周长的一半,宽相当于圆的半径。

(3)因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2。

16、平面图形的周长和面积计算公式:

长方形周长=(长+宽)×2

长方形面积=长×宽

正方形周长=边长×4

正方形面积=边长×边长

平行四边形面积=底×高

三角形面积=底×高÷2

梯形面积=(上底+下底)×高÷2

C=πd

C=2πr

r=d÷2

r=C÷2π

d=2r

d=c÷π

S=πr2

17、常用数据:

常用π值

常用平方数

2π=6.28

3π=9.42

4π=12.56

5π=15.70

6π=18.84

7π=21.98

8π=25.12

9π=28.26

10π=31.4

12π=37.68

15π=47.1

16π=50.24

18π=56.52

20π=62.8

25π=78.5

32π=.48

2.25π=7.

6.25π=19.

=

=

132=

142=

=

=

立体图形

1、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。

2、圆柱的特征:一个侧面、两个底面、无数条高。

3、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

4、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

5、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。

6、圆柱和圆锥三种关系:

(1)等底等高:体积1︰3

(2)等底等体积:高1︰3

(3)等高等体积:底面积1︰3

7、等底等高的圆柱和圆锥:

(1)圆锥体积是圆柱的,

(2)圆柱体积是圆锥的3倍,

(3)圆锥体积比圆柱少,

(4)圆柱体积比圆锥多2倍。

8、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

9、立体图形公式推导:

圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)

(1)圆柱的侧面展开后一般得到一个长方形。

(2)长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

(3)因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

(4)圆柱的侧面展开后还可能得到一个正方形。

正方形的边长=圆柱的底面周长=圆柱的高。

我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?

(1)把圆柱分成若干等份,切开后拼成了一个近似的长方体。

(2)长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

(3)因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。

即:V=Sh。

请画图说明圆锥体积公式的推导过程?

(1)找来等底等高的空圆锥和空圆柱各一只。

(2)将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

(3)通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=Sh。

10、立体图形的棱长总和、表面积、体积计算公式: 

长方体棱长总和=(长+宽+高)×4

长方体表面积=(长×宽+长×高+宽×高)×2

长方体体积=长×宽×高

正方体棱长总和=棱长×12

正方体表面积=棱长×棱长×6

正方体体积=棱长×棱长×棱长

圆柱侧面积=底面周长×高

圆柱表面积=侧面积+底面积×2

圆柱体积=底面积×高

圆锥体积:V=1/3Sh

(二)图形与变换

1、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。

2、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。

3、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。

第三部份 统计与可能性

(一)统计

1、我们通常都是通过打勾、画圆、划“正”字的方法进行数据的收集和整理。

2、常见的统计图有条形统计图、折线统计图和扇形统计图三种。

3、条形统计图的特点:从图中能清楚地看出各种数量的多少,便于比较。

4、折线统计图的特点:不但能看出各种数量的多少,而且还能够清楚地表示出数量增减变化的趋势。

5、扇形统计图的特点:表示各部分数量和总数量之间的关系

(二)可能性

1、

事件状态

生活情景

数学情景

一定会发生

太阳从东方升起

从5个红球中摸出一个红球

一定不会发生

鸭子会讲话

从5个红球中摸出一个白球

可能发生

今天会下雨

从5个红球,1个白球中摸出一个白球

2、在可能性相同的情况下,比赛游戏规则是公平的。

(向上滑动查看内容)

北师大版六年级数学下知识点复习

▼▼▼▼

第一单元圆柱和圆锥

1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:

(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;

(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;

(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh

圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2

圆柱表面积的计算方法的特殊应用:

(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:

复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。所以圆的面积=π×半径×半径=π×半径2

如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。因此,圆柱的体积=底面积×高如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。

例题:填空:圆柱体积公式推导过程是利用(转化)的数学思想,在此过程中(形状)变了,(体积)没变。拼成图形的高于圆柱的(高)相等,他们的底面积(相等)所以圆柱的体积公式为(底面积×高)

圆柱体积公式的应用:

(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;

(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;

(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;

圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

6、圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

7、圆锥的体积:一个圆锥所占空间的大小。

圆锥的体积=1/3×底面积×高如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh

圆锥体积公式的应用:

(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v=1/3Sh”这一公式。

(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3πr2h

(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)2h

(4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r)2h

复习五年级下册知识:

1、体积:物体所占空间的大小叫作物体的体积。

容积:容器所能容纳物体的体积叫做物体的容积。

2、常用单位:体积单位:米3(m3)分米3(dm3)厘米3(cm3)

容积单位:升(L)毫升(ml)

补充知识点:冰箱的容积用“升”作单位;

我们饮用的自来水用“立方米”作单位。

单位换算:(相邻单位之间的进率为0)

(小单位化成大单位要除以进率,大单位化成小单位要乘以进率。

可以概括为:小化大除一下,大化小乘一下)

1米3=0分米31分米3=0厘米31升=0毫升1升=1分米31毫升=1厘米3

单名数与复名数之间的互化:

单名数:由一个数和一个单位名称组成的名数叫做单名数。

复名数:由两个或两个以上的数及单位名称组成的名数叫做复名数。

复名数化为单名数:8米分米3=分米3=8.20米3

单名数化为复名数:毫升=3升毫升25.7立方分米=25立方分米立方厘米

第二单元比例

1、表示两个比相等的式子叫做比例。如:3:4=9:12。

2、比例有四个项,分别是两个内项和两个外项。在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。

3、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。

4、比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。

图上距离÷实际距=离比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺

5、比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺(比例尺1)和放大比例尺(比例尺1)。根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

6、图形的放缩:一幅图放大或缩小,只有按照相同的比来画,画的图才像。

第三单元图形的运动

本册的图形变换知识在原来基础上进一步加深,要求能在方格纸上画出平移、旋转、轴对称后的图形,具体:

第一种旋转:要说明绕哪个点,顺时针还是逆时针,旋转多少度(90度、度、度)。例如:将图形B绕点O顺时针/逆时针旋转90°得到图形C;

绕中心点旋转的方向:顺时针:即顺着钟表时针走的方向,从上往右走,再往下,最后向上。

逆时针:和顺时针的方向相反,从上往左走,再往下,最后向上。

第二种平移:要说明向什么方向(上、下、左、右)平移几个。例如:将图形A向上/下/左/右平移4格得到图形B;

第三种作对称图形:要说明是关于哪条直线作哪个图形的对称图形。例如:以直线MN为对称轴,作图形C的轴对称图形D。

有反应。

第四单元正比例和反比例

1、生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

2、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。

判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

正比例的图像是一条直线。

3、反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再看这两个量的积是否一定;最后作出结

论。

反比例的图像是一条光滑曲线。

数学好玩

1、神奇的莫比乌斯带

2、用“数对”确定位置:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。例如:小青的位置在第三组,第二个座位,用数对表示为(3,2)。

2、根据数对说出相应的实际位置:例如:某个同学在(5,6)这个位置,他的实际位置是,班上(从左往右数)第五组第六个座位。

期末知识点领取方式

▲扫码

转载请注明:http://www.loqky.com/wadwh/11085.html

  • 上一篇文章:
  • 下一篇文章: 没有了
  • 网站简介| 发布优势| 服务条款| 隐私保护| 广告合作| 网站地图| 版权申明

    当前时间: